Пирометры и оптическая пирометрия

Пирометры и оптическая пирометрия

Компас об оптическом бесконтактном методе измерения температуры по интенсивности теплового излучения тел

Что такое оптическая пирометрия?

Пирометрия (от греч. pýr — огонь и… метрия), группа методов измерения температуры. Раньше к пирометрии относили все методы измерения температуры, превышающей предельную для ртутных термометров; с 60-х гг. 20 в. к П. всё чаще относят лишь оптические методы, в частности основанные на применении пирометров, и не включают в неё методы, в которых применяются термометры сопротивления, термоэлектрические термометры с термопарами, и ряд др. методов.

Почти все оптические методы основаны на измерении интенсивности теплового излучения (иногда — поглощения) тел. Интенсивность теплового излучения сильно зависит от температуры Т тел и очень резко убывает с её уменьшением. Поэтому методы П. применяют для измерения относительно высоких температур (например, серийным радиационным пирометром от 200 °С и выше). При Т £ 1000 °С методы П. играют в целом второстепенную роль, но при Т > 1000 °С они становятся главными, а при Т > 3000 °С — практически единственными методами измерения Т.

Методами П. в промышленных и лабораторных условиях определяют:
- температуру в печах и др. нагревательных установках,
- температуру расплавленных металлов и изделий из них (проката и т.п.),
- температуру пламён, нагретых газов, плазмы.

Методы П. не требуют контакта датчика измерительного прибора с телом, температура которого измеряется, и поэтому могут применяться для измерения очень высоких температур. Основное условие применимости методов П.— излучение тела должно быть чисто тепловым, т. е. оно должно подчиняться Кирхгофа закону излучения.

Твёрдые тела и жидкости при высоких температурах обычно удовлетворяют этому требованию, в случае же газов и плазмы необходима специальная проверка для каждого нового объекта или новых физических условий. Так, излучение однородного слоя плазмы подчиняется закону Кирхгофа, если распределения молекул, атомов, ионов и электронов плазмы по скоростям соответствуют Максвелла распределению, заселённости возбуждённых уровней энергии соответствуют закону Больцмана, а диссоциация и ионизация определяются: действующих масс законом, причём во все эти соотношения входит одно и то же значение Т. Такое состояние плазмы называется термически равновесным. Интенсивность излучения однородной равновесной плазмы и в линейчатом, и в сплошном спектрах однозначно определяется её химическим составом, давлением, атомными константами и равновесной температурой. Если плазма неоднородна, то даже при повсеместном выполнении условий термического равновесия её излучение не подчиняется закону Кирхгофа. В этом случае методы П. применимы лишь к источникам света, обладающим осевой симметрией.

Что представляют собой пирометры?

Существует два основных способа измерения температуры – контактный и бесконтактный, посредством инфракрасной и СВЧ технологий. Приборы для бесконтактного контроля, работающие по ИК-технологии, являются, безусловно, наилучшим выбором для промышленного применения, благодаря их повышенной точности и возможности измерять температуру горячих, движущихся или труднодоступных объектов с безопасного расстояния. Инфракрасные термометры (пирометры) – это быстрый и простой метод определения температурных отклонений (наведите пирометр на объект, нажмите на курок и считайте значение температуры на дисплее).

Существует большое разнообразие инфракрасной аппаратуры, включая дорогостоящие тепловизоры, которые создают двумерное изображение поверхности измеряемых объектов. Портативные пирометры (точечные тепловизоры), напротив, обеспечивают не только измерения температуры поверхности но и сковь оптически прозрачные материалы. Хотя некоторые последние модели имеют функциональные возможности фото и видео-регистрации – что служит выгодной недорогой альтернативой тепловизорам. Некоторые модели портативных инфракрасных термометров очень удобны для выборочной, поточечной проверки – их маленький размер позволяет поместить их в карман или носить на поясе. Большинство пирометров оснащено лазерным прицелом, который помогает измерять маленькие объекты с оптимальных расстояний, даже в условиях низкой освещенности. Температура объектов размером 6 мм может измеряться с расстояния до 3 м.

История

Один из первых пирометров изобретён Pieter van Musschenbroeck (1692—1761).
Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже), при которых тепловое излучение не видно человеческим глазом.

Применение пирометров:

Пирометры – бесконтактные измерители температуры по-прежнему являются незаменимыми элементами цепей контроля и управления в целом ряде отраслей промышленности – металлургической, машиностроительной, электронной, химической, медико-биологической и т.д. Им нет альтернативы при измерении температуры движущихся (например металл на прокатном стане), труднодоступных или находящихся в опасных зонах (подстанции высокого напряжения) объектов.

Использование современной элементной базы существенно расширило возможности этих приборов и позволило наделить их новыми свойствами – помимо измерения они могут теперь проводить обработку полученной информации и осуществлять сложные действия по управлению технологическим процессом. Снизился их вес, уменьшились габариты, приборы стали проще и удобнее в эксплуатации.
Все это оказалось возможным благодаря применению в приборах новой элементной базы, включающей микропроцессоры. Использование электроники нового поколения позволило также снизить процент отказов приборов как за счет уменьшения количества используемых элементов, так и за счет высокой надежности каждого из них. Кроме того, более корректно учитывается влияние излучательной способности измеряемого объекта и температуры окружающей среды, что позволило повысить точность измерений в цеховых условиях. Высокая стабильность источников опорного напряжения и цифровое преобразование сигнала приемника излучения в температуру создали предпосылки для увеличения межповерочного интервала пирометров.

Все более широкое применение получает радиационная термометрия в технологических процессах, ранее традиционно использовавших контактные методы, причем диапазон измерений расширился в сторону низких температур до минус 50С, расширяется область применения тепловизоров, очень актуально внедрение неконтактных методов измерения температуры в энергетической промышленности.

Области применения пирометров:
- теплоэнергетика: котлы, турбины, бойлеры, теплотрассы, паропроводы;
- электроэнергетика: трансформаторы, кабели, контакты, шины под напряжением;
- металлургия и металлообработка: печи, станы, прессы;
- электроника: контроль температуры элементов и деталей;
- диагностика двигателей внутреннего сгорания;
- электродвигатели и подшипники;
- контроль температуры производственных процессов;
- контроль условий хранения и перевозки пищевых продуктов;
- обследование зданий и сооружений;
- системы отопления, вентиляции и кондиционирования;
- обследование холодильной техники;
- оснащение пожарных бригад.

Типы пирометров

По принципу действия пирометры делятся на два типа:

Односпектральные пирометры

Односпектральные пирометры принимают излучение в одном спектральном диапазоне, при этом диапазон может быть достаточно широким. Далее по измеренному значению мощности определяется температура.

Существуют следующие подтипы односпектральных пирометров:
Яркостные. Сравниваются яркости (как правило, визуально, в диапазоне красного света) объекта измерения и эталонного нагретого тела.
Радиационные. Мощность теплового излучения измеряется и пересчитывается в температуру.

Односпектральные пирометры, принимающие настолько широкую спектральную полосу, что она содержит значительную часть полной мощности теплового излучения, называют пирометрами полного излучения.


Мультиспектральные пирометры

Мультиспектральные пирометры (также известны как пирометры спектрального отношения и цветовые пирометры) принимают излучение в двух и более спектральных диапазонах. Температура объекта определяется путём сравнения мощностей в различных диапазонах.

Основные характеристики пирометров

Диапазон температур и длина волны пирометра
Рабочий диапазон температур пирометра зависит от длины волны излучения, на которое реагирует детектор пирометра. Так как спектр излучения с ростом температуры смещается в сторону коротких волн, высокотемпературные пирометры имеют более короткую длину волны. Для пользователя рабочая длина волны пирометра не имеет значения, его интересует диапазон температур.

Быстродействие пирометра
Так как пирометры применяются в случаях быстрого изменения температуры, быстродействие для них является важной характеристикой. Оно обычно оценивается временем достижения 95% установившегося показания (время установления показания).

Установка излучательной способности
Для точного определения температуры тела по его излучению необходимо знать его излучательную способность (степень черноты). Большинство поверхностей по характеру излучения близки к черному телу, однако некоторые (например, полированные металлы) существенно отличаются. Простые пирометры настроены на фиксированную излучательную способность (чаще всего — 0,95), поэтому при измерении температуры хорошо отражающей поверхности они дают погрешность в несколько градусов. В более сложных пирометрах можно устанавливать излучательную способность, компенсируя эту погрешность. В наиболее совершенных пирометрах имеются встроенные таблицы излучательной способности многих известных материалов, что избавляет от необходимости их запоминания.

Оптическое разрешение пирометра
Пирометры измеряют среднюю температуру поверхности, находящейся в области чувствительности. Область чувствительности пирометра приближенно можно представить конусом, вершина которого упирается в объектив прибора, а основание располагается на поверхности объекта. Отношение высоты конуса к его диаметру L:D, называемое оптическим разрешением пирометра, является одной из основных характеристик прибора (иногда используют обратную величину — D:L). Чем больше L:D, тем более мелкие предметы пирометр может различить на расстоянии.

Фокусное расстояние пирометра
Область чувствительности пирометра можно считать конической только на достаточном расстоянии. Вблизи она имеет более сложную форму. Часто у пирометра зона чувствительности сначала сужается до минимума, а затем начинает расширяться в форме конуса. Расстояние F, на котором достигается минимальный диаметр зоны чувствительности d, называется фокусным расстоянием. Для таких пирометров параметры F и d указываются в документации. Существуют специальные короткофокусные пирометры, у которых d составляет 5…8 мм на расстоянии F 300…600 мм.

Способ нацеливания пирометра
Простейшие пирометры не имеют устройства нацеливания и могут применяться только на близких расстояниях. Для нацеливания пирометра на удаленные объекты чаще всего применяется луч лазера. С помощью одиночного лазерного луча можно определить только точку вблизи центра зоны чувствительности. У такого прицела луч лазера не совпадает с оптической осью объектива пирометра, поэтому центр зоны смещен относительно лазергого указателя на фиксированное расстояние 1-2 см (т.н. ошибка параллакса). В усовершенствованном коаксиальном прицеле луч лазера выходит из центра объектива пирометра и всегда попадает в центр зоны измерения. Двойной лазерный прицел показывает не только расположение, но и размер зоны измерения пирометра, однако на близком расстоянии он может быть сильно завышен. Разновидность двойного прицела с пересекающимися лучами называется кросс-лазером и обычно применяется в короткофокусных пирометрах, так как этот вид лазера удобен для определения местоположения фокуса объектива. Круговой лазерный прицел, образованный несколькими лучами, наглядно обозначает зону измерения пирометра. Простому круговому прицелу присущи уже упомянутые недостатки — параллакс и завышенный размер зоны измерения на близком расстоянии. Наиболее совершенный прицел, лишенный этих недостатков, создается несколькими лазерными лучами, расположенными вокруг объектива пирометра и образующими гиперболоид вращения. Такой прицел точно обозначает зону измерения на любом расстоянии от пирометра, поэтому он называется точным круговым лазером (TRUE SPOT).
Лазерный луч плохо виден на ярко освещенной или раскаленной поверхности, поэтому высокотемпературные пирометры для нацеливания иногда оснащаются оптическими визорами.

Основные преимущества и недостатки пирометрического метода перед контактными

1. Перед контактными методами измерения температуры пирометрические обладают следующими преимуществами:
- высоким быстродействием, определяемым типом приемника излучения и схемой обработки электрических сигналов. При использовании квантовых приемников излучения (фотодиодов) и быстродействующих аналогово-цифровых преобразователей (АЦП) постоянная времени может составлять 10-2 – 10-6 с.;
- возможностью измерения температуры движущихся объектов и элементов оборудования, находящихся под высоковольтным потенциалом;
- отсутствием искажения температурного поля объекта контроля, что особенно актуально при измерении температуры материалов с низкой теплопроводностью (дерево, пластик и др.), а также риска повреждения поверхности и формы в случае мягких (пластичных) объектов;
- возможностью измерения высоких температур, при которых применение контактных средств измерения либо невозможно, либо время их работы очень невелико;
- возможностью работы в условиях повышенной радиации и температуры окружающей среды (до 250°С) при разнесении приемной головки и электроники пирометра с помощью оптоволоконного кабеля.

2. Основными недостатками пирометрических измерений температуры являются трудности полного учета связей между термодинамической температурой объекта и регистрируемой пирометром тепловой радиацией. Необходимо учитывать изменение излучательной способности поверхности e от длины волны l в регистрируемом спектральном диапазоне и от температуры T в диапазоне измерений, наличие поглощения излучения в среде между пирометром и объектом контроля, геометрические параметры поля зрения пирометра и его оптической системы, температуру окружающей среды и корпуса прибора.